

info@atrinelec.com

@atrinelec

October 1987 Revised January 1999

FAIRCHILD

SEMICONDUCTOR

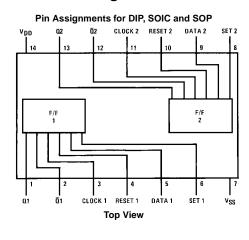
CD4013BC Dual D-Type Flip-Flop

General Description

The CD4013B dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement mode transistors. Each flip-flop has independent data, set, reset, and clock inputs and "Q" and "Q" outputs. These devices can be used for shift register applications, and by connecting "Q" output to the data input, for counter and toggle applications. The logic level present at the "D" input is transferred to the Q output during the positive-going transition of the clock and is accomplished by a high level on the set or reset line respectively.

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL: fan out of 2 driving 74L compatibility: or 1 driving 74LS

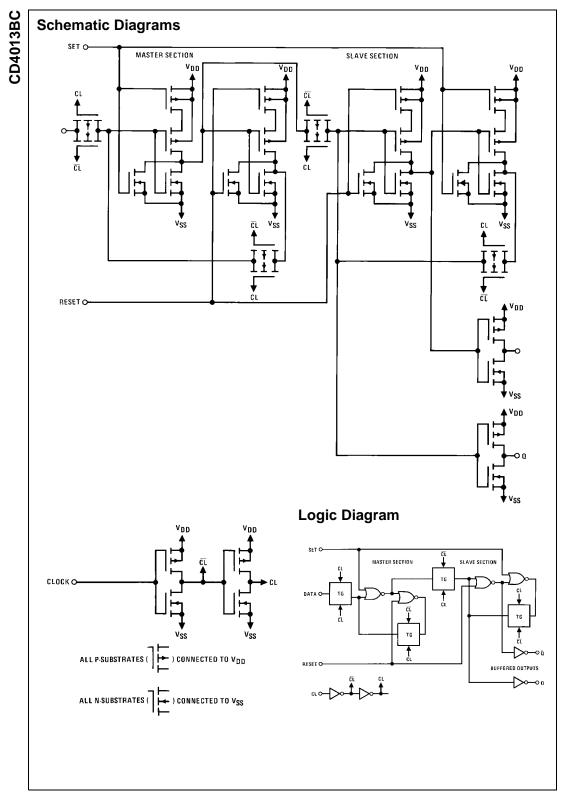

Applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industrial electronics
- Remote metering
- Computers

Ordering Code:

Order Number	Package Number	Package Description
CD4013BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
CD4013BCSJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4013BCN	N14A	14-Lead Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available in	n Tape and Reel. Specify by	/ appending the suffix letter "X" to the ordering code.

Connection Diagram



Truth Table

CL (Note 1)	D	R	S	Q	Q
\	0	0	0	0	1
~	1	0	0	1	0
~	х	0	0	Q	Q
x	х	1	0	0	1
x	х	0	1	1	0
x	х	1	1	1	1

No Change x = Don't Care Case

Note 1: Level Change

Absolute Maximum Ratings(Note 2)

(Note 3)

2)	Recommended Operating
	Conditions

DC Supply Voltage (V_{DD}) Input Voltage (V_{IN}) Storage Temperature Range (T_S)	$\begin{array}{c} -0.5 \; V_{DC} \; to \; +18 \; V_{DC} \\ -0.5 \; V_{DC} \; to \; V_{DD} \; +0.5 \; V_{DC} \\ -65^{\circ}C \; to \; +150^{\circ}C \end{array}$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Conditions (Note 3)

DC Supply Voltage (V_{DD}) Input Voltage (V_{IN})

0 V_DC to V_DD V_DC

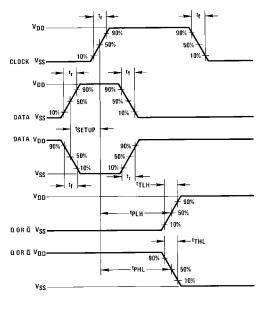
+3 V_{DC} to +15 V_{DC}

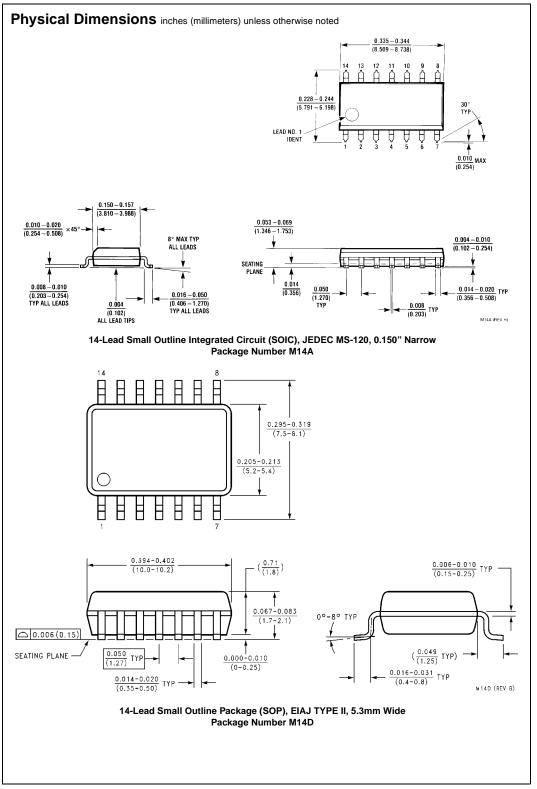
mended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 3: $V_{SS} = 0V$ unless otherwise specified.

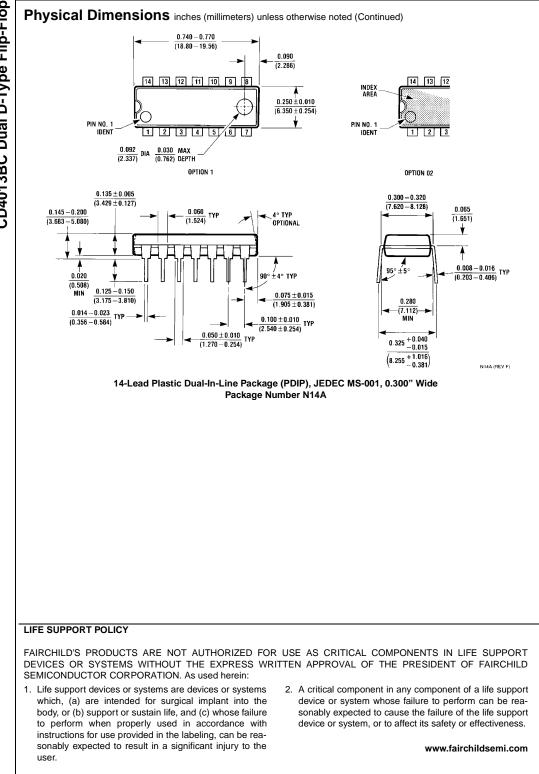
DC Electrical Characteristics (Note 3)										
Querra ha a l		a	-40°C		+25°C			+ 85°C		
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$		4.0			4.0		30	μA
	Current	V_{DD} = 10V, V_{IN} = V_{DD} or V_{SS}		8.0			8.0		60	μA
		V_{DD} = 15V, V_{IN} = V_{DD} or V_{SS}		16.0			16.0		120	μA
V _{OL}	LOW Level	I _O < 1.0 μA								
	Output Voltage	$V_{DD} = 5V$		0.05			0.05		0.05	V
		$V_{DD} = 10V$		0.05			0.05		0.05	V
		$V_{DD} = 15V$		0.05			0.05		0.05	V
V _{OH}	HIGH Level	I _O < 1.0 μA								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95			4.95		V
		$V_{DD} = 10V$	9.95		9.95			9.95		V
		$V_{DD} = 15V$	14.95		14.95			14.95		V
VIL	LOW Level	I _O < 1.0 μA								
	Input Voltage	V_{DD} = 5V, V_O = 0.5V or 4.5V		1.5			1.5		1.5	V
		$V_{DD} = 10V$, $V_O = 1.0V$ or $9.0V$		3.0			3.0		3.0	V
		V_{DD} = 15V, V_O = 1.5V or 13.5V		4.0			4.0		4.0	V
VIH	HIGH Level	I _O < 1.0 μA								
	Input Voltage	$V_{DD} = 5 \text{V}, \ \text{V}_{O} = 0.5 \text{V} \text{ or } 4.5 \text{V}$	3.5		3.5			3.5		V
		$V_{DD} = 10V$, $V_O = 1.0V$ or $9.0V$	7.0		7.0			7.0		V
		V_{DD} = 15V, V_O = 1.5V or 13.5V	11.0		11.0			11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_O = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_O = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μA
		$V_{DD}=15V,\ V_{IN}=15V$		0.3		10 ⁻⁵	0.3		1.0	μA
Mate A.L										

Note 4: $I_{OH} \mbox{ and } I_{OL} \mbox{ are measured one output at a time.}$


CD4013BC


AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CLOCK OPERATI	ON					
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		200	350	ns
		$V_{DD} = 10V$		80	160	ns
		$V_{DD} = 15V$		65	120	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WL} , t _{WH}	Minimum Clock	$V_{DD} = 5V$		100	200	ns
	Pulse Width	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		32	65	ns
t _{RCL} , t _{FCL}	Maximum Clock Rise and	$V_{DD} = 5V$			15	μs
	Fall Time	$V_{DD} = 10V$			10	μs
		$V_{DD} = 15V$			5	μs
t _{SU}	Minimum Set-Up Time	$V_{DD} = 5V$		20	40	ns
		$V_{DD} = 10V$		15	30	ns
		$V_{DD} = 15V$		12	25	ns
f _{CL}	Maximum Clock	$V_{DD} = 5V$	2.5	5		MHz
	Frequency	$V_{DD} = 10V$	6.2	12.5		MHz
		$V_{DD} = 15V$	7.6	15.5		MHz
SET AND RESET	OPERATION					
t _{PHL(R)} ,	Propagation Delay Time	$V_{DD} = 5V$		150	300	ns
t _{PLH(S)}		$V_{DD} = 10V$		65	130	ns
		$V_{DD} = 15V$		45	90	ns
t _{WH(R)} ,	Minimum Set and	$V_{DD} = 5V$		90	180	ns
t _{WH(S)}	Reset Pulse Width	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		25	50	ns
CIN	Average Input Capacitance	Any Input	1	5	7.5	pF


Note 5: AC Parameters are guaranteed by DC correlated testing.

Switching Time Waveforms

CD4013BC

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.