

02166766957 -02166766927

info@atrinelec.com

@atrinelec

Data sheet acquired from Harris Semiconductor SCHS205A

CD74HC4049, CD74HC4050

High-Speed CMOS Logic Hex Buffers, Inverting and Non-Inverting

February 1998 - Revised June 1999

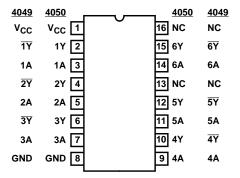
Features

- Typical Propagation Delay: 6ns at V_{CC} = 5V, C_L = 15pF, T_A = 25°C
- High-to-Low Voltage Level Converter for up to V_I = 16V
- Fanout (Over Temperature Range)
- Wide Operating Temperature Range . . . –55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V

Description

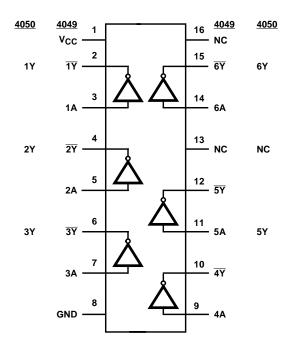
The CD74HC4049 and CD74HC4050 are fabricated with high-speed silicon gate technology. They have a modified input protection structure that enables these parts to be used as logic level translators which convert high-level logic to a low-level logic while operating off the low-level logic supply. For example, 15-V input pulse levels can be down-converted to 0-V to 5-V logic levels. The modified input protection structure protects the input from negative electrostatic discharge. These parts also can be used as simple buffers or inverters without level translation. The CD74HC4049 and CD74HC4050 are enhanced versions of equivalent CMOS types.

Ordering Information


PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.		
CD74HC4049E	-55 to 125	16 Ld PDIP	E16.3		
CD74HC4050E	-55 to 125	16 Ld PDIP	E16.3		
CD74HC4049M	-55 to 125	16 Ld SOIC	M16.15		
CD74HC4050M	-55 to 125	16 Ld SOIC	M16.15		
CD74HC4050PW	-55 to 125	16 Ld TSSOP			

NOTES:

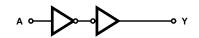
- When ordering, use the entire part number. Add the suffix 96 to the M suffix or the R suffix to the PW package to obtain the variant in the tape and reel.
- Wafer and die is available which meets all electrical specifications. Please contact your local sales office or customer service for ordering information.


Pinout

CD74HC4049, CD74HC4050 (PDIP, SOIC, TSSOP) TOP VIEW

CD74HC4049, CD74HC4050

Functional Diagram



Logic Diagrams

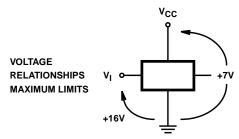
HC4049

 $A \longleftarrow \bigvee \overline{Y}$

HC4050

CD74HC4049, CD74HC4050

Absolute Maximum Ratings


DC Supply Voltage, V _{CC}
DC Input Diode Current, I _{IK}
For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$ ±20mA
DC Output Diode Current, I _{OK}
For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$
DC Output Source or Sink Current per Output Pin, IO
For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$
DC V _{CC} or Ground Current, I _{CC or} I _{GND}

Operating Conditions

Temperature Range (T _A)–55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

Thermal Information

Thermal Resistance (Typical, Note 3)	θ _{JA} (ºC/W)
PDIP Package	. 78
SOIC Package	
TSSOP Package	. 149
Maximum Junction Temperature (Hermetic Package or	Die) 175°C
Maximum Junction Temperature (Plastic Package) .	
Maximum Storage Temperature Range	-65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC - Lead Tips Only)	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

3. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

DC Electrical Specifications

		TE: CONDI		v _{cc}	25°C			–40°C TO 85°C		–55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES		-			-	-		-	-		-	
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	·	0.5	V
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output	V _{OH}	V _{IH} or V _{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
Voltage CMOS Loads			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
Omeo Loado			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output	1		-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Voltage TTL Loads			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads	1		4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μА
		15	-	6	-	-	±0.5	-	±5	-	±5	
Quiescent Device Current	I _{CC}	V _{CC} or GND	0	6	-	-	2	-	20	-	40	μА

NOTE: For dual-supply systems theorectical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

CD74HC4049, CD74HC4050

Switching Specifications Input t_r , t_f = 6ns

		TEST		25°C		–40°C TO 85°C		–55°C TO 125°C			
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES										_	
Propagation Delay,	t _{PLH} , t _{PHL}	$C_L = 50pF$	2	-	-	85	-	105	-	130	ns
nA to nY HC4049 nA to nY HC4050			4.5	-	-	17	-	21	-	26	ns
1000			6	-	-	14	-	18	-	22	ns
		C _L = 15pF	5	-	6	-	-	-	-	-	ns
Transition Times (Figure 1)	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Input Capacitance	Cl	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	-	5	-	35	-	-	-	-	-	pF

NOTES:

- 4. C_{PD} is used to determine the dynamic power consumption, per gate.
- 5. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuit and Waveform

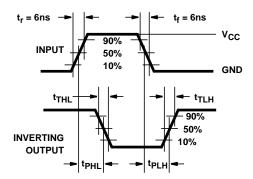


FIGURE 1. HC AND HCU TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated