

info@atrinelec.com

@atrinelec

HT1623 RAM Mapping 48×8 LCD Controller for I/O MCU

PATENTED PAT No. : TW 099352

Technical Document

<u>Application Note</u>

Features

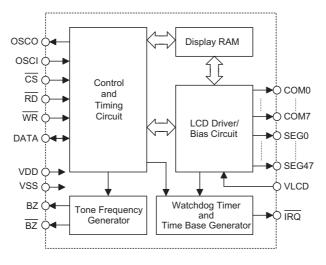
- Operating voltage: 2.7V~5.2V
- Built-in RC oscillator
- External 32.768kHz crystal or 32kHz frequency source input
- 1/4 bias, 1/8 duty, frame frequency is 64Hz
- Max. 48×8 patterns, 8 commons, 48 segments
- Built-in internal resistor type bias generator
- 3-wire serial interface
- 8 kinds of time base or WDT selection
- Time base or WDT overflow output

- Built-in LCD display RAM
- R/W address auto increment
- Two selection buzzer frequencies (2kHz or 4kHz)
- Power down command reduces power consumption
- Software configuration feature
- Data mode and Command mode instructions
- Three data accessing modes
- VLCD pin to adjust LCD operating voltage
- 100-pin LQFP package

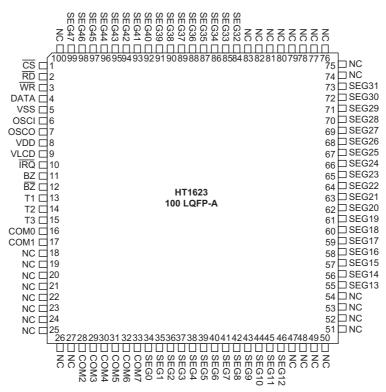
General Description

HT1623 is a peripheral device specially designed for I/O type MCU used to expand the display capability. The max. display segment of the device are 384 patterns (48×8). It also supports serial interface, buzzer sound, watchdog timer or time base timer functions. The HT1623 is a memory mapping and multi-function LCD controller. The software configuration feature of the

HT1623 make it suitable for multiple LCD applications including LCD modules and display subsystems. Only three lines are required for the interface between the host controller and the HT1623. The HT162X series have many kinds of products that match various applications.

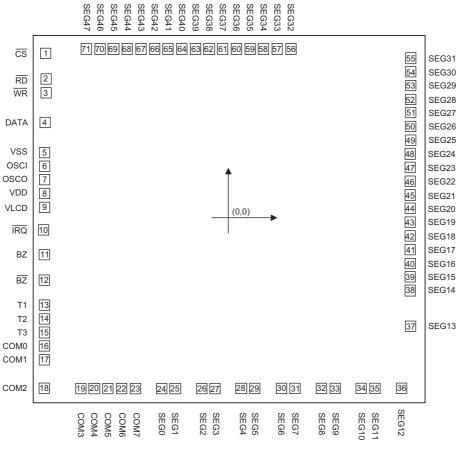

Selection Table

HT162X	HT1620	HT1621	HT1622	HT16220	HT1623	HT1625	HT1626
СОМ	4	4	8	8	8	8	16
SEG	32	32	32	32	48	64	48
Built-in Osc.		\checkmark	\checkmark			\checkmark	
Crystal Osc.	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	



HT1623

Block Diagram


Pin Assignment

HT1623

Pad Assignment

Chip size: $113 \times 106 \text{ (mil)}^2$

* The IC substrate should be connected to VDD in the PCB layout artwork.

HT1623

Pad Coordinates

Pad Coordinat	es				Unit: μm
Pad No.	X	Y	Pad No.	X	Y
1	-1328.790	1200.109	37	1322.060	-779.760
2	-1328.790	1008.378	38	1322.060	-522.546
3	-1328.785	909.341	39	1322.060	-423.524
4	-1337.200	696.447	40	1322.060	-324.425
5	-1337.162	475.635	41	1322.060	-225.404
6	-1337.925	376.661	42	1322.060	-126.305
7	-1337.925	277.639	43	1322.060	-27.285
8	-1337.887	178.570	44	1322.060	71.814
9	-1337.925	79.595	45	1322.060	170.835
10	-1343.075	-79.689	46	1322.060	269.935
11	-1337.925	-260.141	47	1322.060	368.956
12	-1337.925	-444.992	48	1322.060	468.055
13	-1337.925	-625.740	49	1322.060	567.076
14	-1337.925	-724.760	50	1322.060	666.174
15	-1337.925	-823.859	51	1322.060	765.195
16	-1337.925	-922.880	52	1322.060	864.294
17	-1337.925	-1021.979	53	1322.060	963.315
18	-1337.887	-1228.075	54	1322.060	1062.415
19	-1076.690	-1228.075	55	1322.060	1161.436
20	-977.669	-1228.075	56	451.081	1226.600
21	-878.570	-1228.075	57	352.060	1226.600
22	-779.549	-1228.075	58	252.960	1226.600
23	-680.449	-1228.075	59	153.939	1226.600
24	-488.720	-1228.075	60	54.840	1226.600
25	-389.620	-1228.075	61	-44.181	1226.600
26	-197.889	-1228.075	62	-143.279	1226.600
27	-98.790	-1228.075	63	-242.301	1226.600
28	92.941	-1228.075	64	-341.399	1226.600
29	192.040	-1228.075	65	-440.420	1226.600
30	383.771	-1228.075	66	-539.520	1226.600
31	482.871	-1228.075	67	-638.541	1226.600
32	674.600	-1228.075	68	-737.640	1226.600
33	773.701	-1228.075	69	-836.661	1226.600
34	965.431	-1228.075	70	-935.760	1226.600
35	1064.531	-1228.075	71	-1034.781	1226.600
36	1256.260	-1228.075			

Pad Description

Pad No.	Pad Name	I/O	Description
1	cs	I	Chip selection input with pull-high resistor. When the \overline{CS} is logic high, the data and command read from or written to the HT1623 are disabled. The serial interface circuit is also reset But if the \overline{CS} is at logic low level and is input to the \overline{CS} pad, the data and command transmission between the host controller and the HT1623 are all enabled.
2	RD	I	READ clock input with pull-high resistor. Data in the RAM of the HT1623 are clocked out on the falling edge of the \overline{RD} signal. The clocked out data will appear on the data line. The host controller can use the next rising edge to latch the clocked out data.
3	WR	I	WRITE clock input with pull-high resistor. Data on the DATA line are latched into the HT1623 on the rising edge of the $\overline{\rm WR}$ signal.
4	DATA	I/O	Serial data input or output with pull-high resistor
5	VSS	_	Negative power supply, ground
6	OSCI	I	The OSCI and OSCO pads are connected to a 32.768kHz crystal in order to
7	OSCO	0	generate a system clock. If the system clock comes from an external clock source, the external clock source should be connected to the OSCI pad. But if an on-chip RC oscillator is selected instead, the OSCI and OSCO pads can be left open.
8	VDD	_	Positive power supply
9	VLCD	I	LCD operating voltage input pad.
10	ĪRQ	0	Time base or watchdog timer overflow flag, NMOS open drain output
11, 12	BZ, BZ	0	2kHz or 4kHz tone frequency output pair
13~15	T1~T3	I	Not connected
16~23	COM0~COM7	0	LCD common outputs
24~71	SEG0~SEG47	0	LCD segment outputs

Absolute Maximum Ratings

Supply Voltage0.3V to 5.5V	Storage Temperature50°C to 125°C
Input VoltageV_SS-0.3V to V_DD+0.3V	Operating Temperature25°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

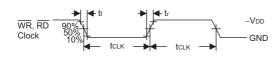
Ta=25°C

D.C. Characteristics

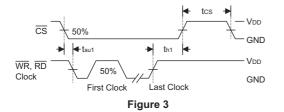
Com La L	D		Test Conditions		т	M	11
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage	_		2.7	_	5.2	V
		3V	No load or LCD ON		155	310	μA
I _{DD1}	1 Operating Current		On-chip RC oscillator		260	420	μA
I	Operating Current	3V	No load or LCD ON		150	310	μA
I _{DD2}	Operating Current	5V	Crystal oscillator		250	420	μA
I _{DD11}	Operating Current	3V	No load or LCD OFF		8	30	μA
10011		5V	On-chip RC oscillator		20	60	μA
1	Operating Current	3V	No load or LCD OFF		_	20	μA
I _{DD22}	Operating Current		Crystal oscillator			35	μA
l			No load, Power down mode		1	10	μA
I _{STB}	Standby Current	5V	No load, Fower down mode		2	20	μA
V _{IL}	Input Low Voltage	3V	DATA, WR, CS, RD	0		0.6	V
۷IL	Input Low Voltage	5V		0		1.0	V
V _{IH}	Input High Voltage	3V	DATA, WR, CS, RD	2.4		3	V
۷IH		5V		4.0		5	V
I _{OL1}	BZ, BZ, IRQ	3V	V _{OL} =0.3V	0.9	1.8		mA
		5V	V _{OL} =0.5V	1.7	3		mA
I _{OH1}	BZ, BZ	3V	V _{OH} =2.7V	-0.9	-1.8		mA
UHI		5V	V _{OH} =4.5V	-1.7	-3		mA
I _{OL2}	DATA	3V	V _{OL} =0.3V	0.9	1.8		mA
'UL2		5V	V _{OL} =0.5V	1.7	3		mA
I _{OH2}	DATA	3V	V _{OH} =2.7V	-0.9	-1.8		mA
'OH2		5V	V _{OH} =4.5V	-1.7	-3		mA
I _{OL3}	LCD Common Sink Current	3V	V _{OL} =0.3V	80	160		μA
'OL3		5V	V _{OL} =0.5V	180	360		μA
I _{OH3}	LCD Common Source Current	3V	V _{OH} =2.7V	-40	-80		μA
'OH3		5V	V _{OH} =4.5V	-90	-180		μA
	LCD Segment Sink Current	3V	V _{OL} =0.3V	50	100		μA
I _{OL4}		5V	V _{OL} =0.5V	120	240		μA
lou	LCD Segment Source Current	3V	V _{OH} =2.7V	-30	-60		μA
I _{OH4}		5V	V _{OH} =4.5V	-70	-140		μA
Rou	Pull-high Resistor	3V	DATA, WR, CS, RD	100	200	300	kΩ
R _{PH}	Pull-high Resistor	5V	DATA, WR, CO, KD	50	100	150	kΩ

Ta=25°C

Test Conditions Symbol Parameter Min. Тур. Max. Unit V_{DD} Conditions System Clock 5V On-chip RC oscillator 24 32 40 kHz f_{SYS1} 32 kHz f_{SYS2} System Clock External clock source LCD Frame Frequency On-chip RC oscillator 64 80 Hz 5V 48 f_{LCD1} LCD Frame Frequency External clock source 64 Hz f_{LCD2} ____ ____ ____ t_{COM} LCD Common Period ____ n: Number of COM n/f_{LCD} sec 3V 4 150 kHz Serial Data Clock (WR Pin) f_{CLK1} Duty cycle 50% 5V 4 300 kHz ____ 3V 75 kHz Serial Data Clock (RD Pin) f_{CLK2} Duty cycle 50% 5V 150 kHz ____ ____ Serial Interface Reset Pulse Width CS t_{CS} 700 800 ns ____ (Figure 3) Write mode 3.34 125 3V μs Read mode 6.67 WR, RD Input Pulse Width (Figure 1) t_{CLK} 125 1.67 Write mode ____ 5V μs Read mode 3.34 ____ _ Rise/Fall Time Serial Data Clock Width t_r, t_f 120 160 ns (Figure 1) Setup Time DATA to WR, RD Clock t_{su} 60 120 ns Width (Figure 2) Hold Time DATA to WR, RD Clock Width t_h 1000 1200 ns (Figure 2) Setup Time for CS to WR, RD Clock t_{su1} 500 600 ns Width (Figure 3) Hold Time for \overline{CS} to \overline{WR} , \overline{RD} Clock Width 1000 1200 t_{h1} ns (Figure 3) Tone Frequency (2kHz) 1.5 2.0 2.5 kHz **f**_{TONE} 5V On-chip RC oscillator Tone Frequency (4kHz) 3.0 4.0 5.0 kHz tOFF V_{DD} OFF Times (Figure 4) ____ VDD drop down to 0V 20 ms V_{DD} Rising Slew Rate (Figure 4) 0.05 V/ms t_{SR} ____ Delay Time after Reset (Figure 4) ms 1 t_{RSTD}


A.C. Characteristics

Note: 1. If the conditions of Power-on Reset timing are not satisfied in power On/Off sequence, the internal Power-on Reset (POR) circuit will not operate normally.


If the VDD drops below the minimum voltage of operating voltage spec. during operating, the conditions
of Power-on Reset timing must be satisfied also. That is, the VDD must drop to 0V and keep at 0V for
20ms (min.) before rising to the normal operating voltage.

CS

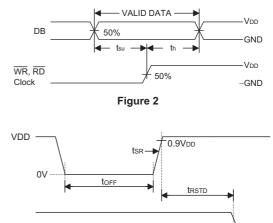


Figure 4. Power-on Reset Timing

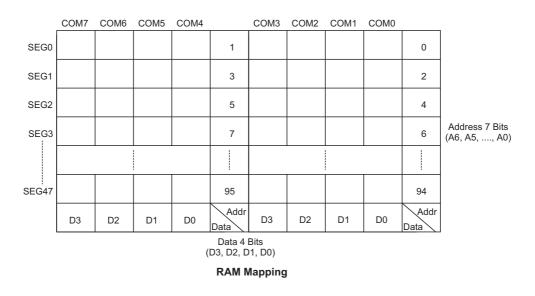
Functional Description

Display Memory – RAM Structure

The static display RAM is organized into 96×4 bits and stores the display data. The contents of the RAM are directly mapped to the contents of the LCD driver. Data in the RAM can be accessed by theREAD, WRITE and READ-MODIFY-WRITE commands. The following is a mapping from the RAM to the LCD patterns.

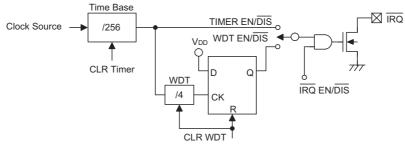
Time Base and Watchdog Timer - WDT

The time base generator and WDT share the same divided (/256) counter. TIMER DIS/EN/CLR, WDT DIS/EN/CLR and \overline{IRQ} EN/DIS are independent from each other. Once the WDT time-out occurs, the \overline{IRQ} pin will remain at logic low level until the CLR WDT or the \overline{IRQ} DIS command is issued.


If an external clock is selected as the source of system frequency, the SYS DIS command turns out invalid and the power down mode fails to be carried out until the external clock source is removed.

Buzzer Tone Output

A simple tone generator is implemented in the HT1623. The tone generator can output a pair of differential driving signals on the BZ and $\overline{\text{BZ}}$ which are used to generate a single tone.

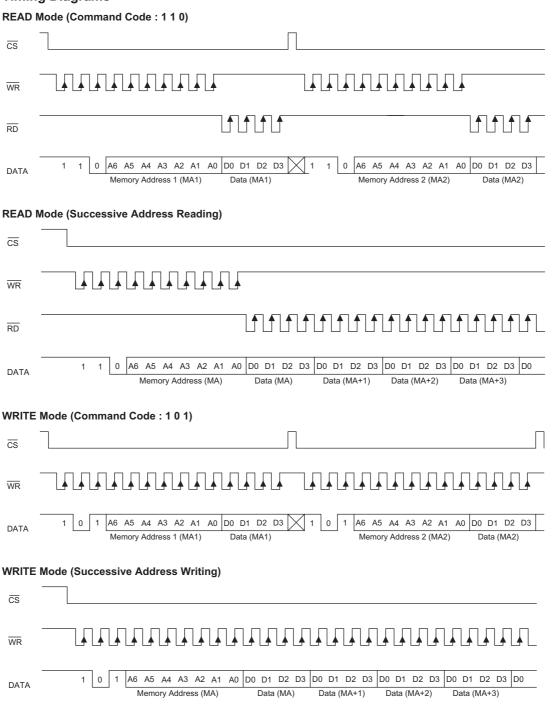

Command Format

The HT1623 can be configured by the software setting. There are two mode commands to configure the HT1623 resource and to transfer the LCD display data.

8

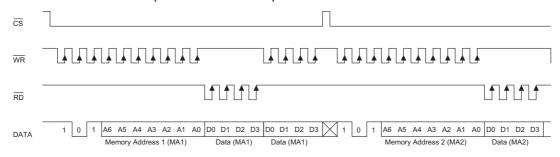
Timer and WDT Configurations

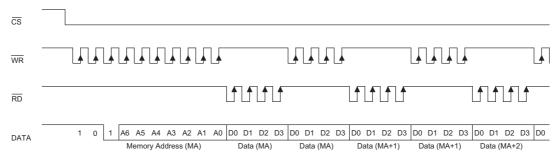
The following are the data mode ID and the command mode ID:


Operation	Mode	ID
READ	Data	110
WRITE	Data	101
READ-MODIFY-WRITE	Data	101
COMMAND	Command	100

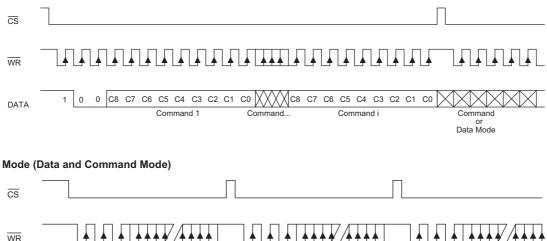
If successive commands have been issued, the command mode ID can be omitted. While the system is operating in the non-successive command or the non-successive address data mode, the $\overline{\text{CS}}$ pin should be set to "1" and the previous operation mode will be reset also. The $\overline{\text{CS}}$ pin returns to "0", a new operation mode ID should be issued first.

Name	Command Code	Function
TONE OFF	0000-1000-X	Turn-off tone output
TONE 4K	010X-XXXX-X	Turn-on tone output, tone frequency is 4kHz
TONE 2K	0110-XXXX-X	Turn-on tone output, tone frequency is 2kHz


Timing Diagrams



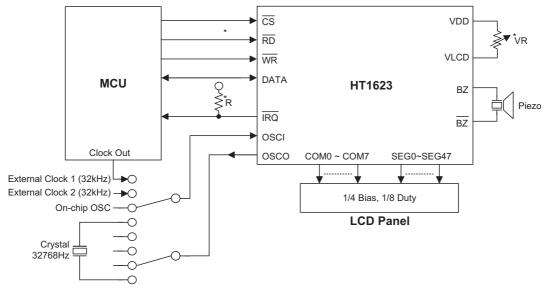
HT1623


READ-MODIFY-WRITE Mode (Command Code : 1 0 1)

READ-MODIFY-WRITE Mode (Successive Address Accessing)

Command Mode (Command Code : 1 0 0)

WR Image: Command or definition of definit


 $\uparrow \uparrow \uparrow \uparrow \uparrow$

′∠↑↑↑

RD

Application Circuits

Note: The connection of IRQ and RD pin can be selected depending on the requirement of the MCU.
The voltage applied to V_{LCD} pin must be equal to or lower than V_{DD}.
Adjust VR to fit user's LCD panel display voltage (V_{LCD}).
Adjust R (external pull-high resistance) to fit user's time base clock.

Name	ID	Command Code	D/C	Function	Def.
READ	110	A6A5A4A3A2A1A0D0D1D2D3	D	Read data from the RAM	
WRITE	101	A6A5A4A3A2A1A0D0D1D2D3	D	Write data to the RAM	
READ-MODIFY- WRITE	101	A6A5A4A3A2A1A0D0D1D2D3	D	D Read and Write data to the RAM	
SYS DIS	100	0000-0000-X	с	C Turn off both system oscillator and LCD bias generator	
SYS EN	100	0000-0001-X	С	Turn on system oscillator	
LCD OFF	100	0000-0010-X	С	Turn off LCD display	Yes
LCD ON	100	0000-0011-X	С	Turn on LCD display	
TIMER DIS	100	0000-0100-X	С	Disable time base output	Yes
WDT DIS	100	0000-0101-X	С	Disable WDT time-out flag output	Yes
TIMER EN	100	0000-0110-X	С	Enable time base output	
WDT EN	100	0000-0111-X	С	Enable WDT time-out flag output	
TONE OFF	100	0000-1000-X	С	Turn off tone outputs	Yes
CLR TIMER	100	0000-1101-X	С	Clear the contents of the time base generator	
CLR WDT	100	0000-1111-X	С	Clear the contents of the WDT stage	
RC 32K	100	0001-10XX-X	С	System clock source, on-chip RC oscillator	Yes
EXT (XTAL) 32K	100	0001-11XX-X	с	System clock source, external 32kHz clock source or crystal oscillator 32.768kHz	
TONE 4K	100	010X-XXXX-X	С	Tone frequency output: 4kHz	

Command Summary

Name	ID	Command Code	D/C	Function	Def.
TONE 2K	100	0110-XXXX-X	С	Tone frequency output: 2kHz	
IRQ DIS	100	100X-0XXX-X	С	Disable IRQ output	Yes
IRQ EN	100	100X-1XXX-X	С	Enable IRQ output	
F1	100	101X-0000-X	С	Time base clock output: 1Hz The WDT time-out flag after: 4s	
F2	100	101X-0001-X	С	Time base clock output: 2Hz The WDT time-out flag after: 2s	
F4	100	101X-0010-X	С	Time base clock output: 4Hz The WDT time-out flag after: 1s	
F8	100	101X-0011-X	С	Time base clock output: 8Hz The WDT time-out flag after: 1/2s	
F16	100	101X-0100-X	С	Time base clock output: 16Hz The WDT time-out flag after: 1/4s	
F32	100	101X-0101-X	С	Time base clock output: 32Hz The WDT time-out flag after: 1/8s	
F64	100	101X-0110-X	С	Time base clock output: 64Hz The WDT time-out flag after: 1/16s	
F128	100	101X-0111-X	С	Time base clock output: 128Hz The WDT time-out flag after: 1/32s	Yes
TEST	100	1110-0000-X	С	Test mode, user don't use.	
NORMAL	100	1110-0011-X	С	Normal mode	Yes

Note: X : Don't care

A6~A0 : RAM address

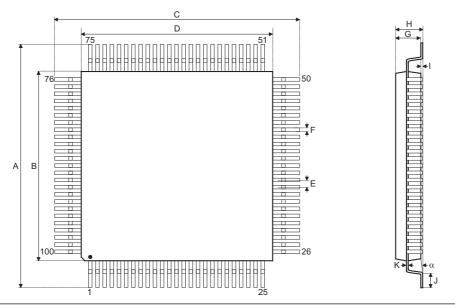
D3~D0 : RAM data

D/C : Data/Command mode

Def. : Power on reset default

All the bold forms, namely **110**, **101**, and **100**, are mode commands. Of these, **100** indicates the command mode ID. If successive commands have been issued, the command mode ID except for the first command will be omitted. The source of the tone frequency and of the time base or WDT clock frequency can be derived from an on-chip 32kHz RC oscillator, a 32.768kHz crystal oscillator, or an external 32kHz clock. Calculation of the frequency is based on the system frequency sources as stated above. It is recommended that the host controller should initialize the HT1623 after power on reset, for power on reset may fail, which in turn leads to the malfunctioning of the HT1623.

Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

100-pin LQFP (14mm×14mm) Outline Dimensions

Symbol		Dimensions in inch					
Symbol	Min.	Nom.	Max.				
А		0.630 BSC					
В		0.551 BSC	—				
С	_	0.630 BSC	—				
D		0.551 BSC					
E		0.020 BSC					
F	0.007	0.009	0.011				
G	0.053	0.055	0.057				
Н	—	_	0.063				
I	0.002	_	0.006				
J	0.018	0.024	0.030				
К	0.004		0.008				
α	0°		7 °				

Symbol		Dimensions in mm					
Symbol	Min.	Nom.	Max.				
A	_	16 BSC	_				
В	_	14 BSC	_				
С		16 BSC	_				
D	_	14 BSC	_				
E	_	0.50 BSC	_				
F	0.17	0.22	0.27				
G	1.35	1.40	1.45				
Н	_	—	1.60				
I	0.05	—	0.15				
J	0.45	0.60	0.75				
К	0.09	—	0.20				
α	0°		7 °				

Copyright © 2014 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.