

02166766957 -02166766927

info@atrinelec.com

@atrinelec

JFET Input Operational Amplifiers

These low cost JFET input operational amplifiers combine two state—of—the—art analog technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The JFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices.

• Input Offset Voltage of 5.0 mV Max (LF347B)

• Low Input Bias Current: 50 pA

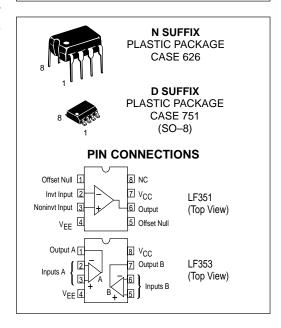
Low Input Noise Voltage: 16 nV/√Hz
 Wide Gain Bandwidth: 4.0 MHz

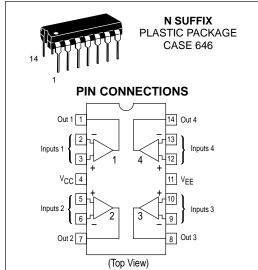
High Slew Rate: 13V/μs

• Low Supply Current: 1.8 mA per Amplifier

High Input Impedance: 10¹² Ω

• High Common Mode and Supply Voltage Rejection Ratios: 100 dB


MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Supply Voltage	V _{CC} VEE	+18 -18	V
Differential Input Voltage	V _{ID}	±30	V
Input Voltage Range (Note 1)	V _{IDR}	±15	V
Output Short Circuit Duration (Note 2)	tsc	Continuous	
Power Dissipation at T _A = +25°C Derate above T _A =+25°C	P _D 1/ ₀ JA	900 10	mW mW/°C
Operating Ambient Temperature Range	T _A	0 to +70	°C
Operating Junction Temperature Range	TJ	115	°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C

NOTES: 1. Unless otherwise specified, the absolute maximum negative input voltage is limited to the negative power supply.

LF347, B LF351 LF353

FAMILY OF JFET OPERATIONAL AMPLIFIERS

ORDERING INFORMATION

Device	Function	Operating Temperature Range	Package
LF351D	Single		SO–8
LF351N	Single		Plastic DIP
LF353D	Dual	$T_A = 0^{\circ} \text{ to } +70^{\circ}\text{C}$	SO-8
LF353N	Dual		Plastic DIP
LF347BN	Quad		Plastic DIP
LF347N	Quad		Plastic DIP

Any amplifier output can be shorted to ground indefinitely. However, if more than one amplifier output is shorted simultaneously, maximum junction temperature rating may be exceeded.

LF347, B LF351 LF353

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V_{EE} = -15 V, T_A = 25°C, unless otherwise noted.)

		LF347B		LF347, LF351, LF353				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S \leq 10 k, V _{CM} = 0) T _A = +25°C 0°C \leq T _A \leq +70°C	VIO	_ _	1.0	5.0 8.0	- -	5.0 –	10 13	mV
Avg. Temperature Coefficient of Input Offset Voltage $R_S \le 10 \text{ k}, 0^{\circ}\text{C} \le T_A \le +70^{\circ}\text{C}$	ΔV _{ΙΟ} /ΔΤ	_	10	_	_	10	_	μV/°C
Input Offset Current ($V_{CM} = 0$, Note 3) $T_A = +25$ °C 0 °C $\leq T_A \leq +70$ °C	IIO	_ _	25 -	100 4.0	_ _	25 -	100 4.0	pA nA
Input Bias Current ($V_{CM} = 0$, Note 3) $T_A = +25^{\circ}C$ $0^{\circ}C \le T_A \le +70^{\circ}C$	I _{IB}	- -	50 -	200 8.0	- -	50 -	200 8.0	pA nA
Input Resistance	rį	_	10 ¹²	_	_	10 ¹²	_	Ω
Common Mode Input Voltage Range	VICR	±11	+15 -12	_	±11	+15 -12	_	V
Large–Signal Voltage Gain ($V_O = \pm 10 \text{ V}$, $R_L = 2.0 \text{ k}$) $T_A = +25^{\circ}\text{C}$ $0^{\circ}\text{C} \le T_A \le +70^{\circ}\text{C}$	AVOL	50 25	100 -	_ _	25 15	100 -	- -	V/mV
Output Voltage Swing (R _L = 10 k)	٧o	±12	±14	-	±12	±14	-	V
Common Mode Rejection (R _S ≤ 10 k)	CMR	80	100	-	70	100	-	dB
Supply Voltage Rejection (R _S ≤ 10 k)	PSRR	80	100	-	70	100	-	dB
Supply Current LF347 LF351 LF353	ID	- - -	7.2 - -	11 - -	- - -	7.2 1.8 3.6	11 3.4 6.5	mA
Short Circuit Current	Isc	_	25	-	_	25	-	mA
Slew Rate (A _V = +1)	SR	_	13	_	_	13	-	V/μs
Gain-Bandwidth Product	BWp	_	4.0	_	_	4.0	-	MHz
Equivalent Input Noise Voltage (RS = 100 Ω , f = 1000 Hz)	e _n	-	24	_	-	24	-	nV/√Hz
Equivalent Input Noise Current (f = 1000 Hz)	in	-	0.01	-	-	0.01	-	pA/√Hz
Channel Separation (LF347, LF353) 1.0 Hz \leq f \leq 20 kHz (Input Referred)	_	-	-120	-	-	-120	-	dB

For Typical Characteristic Performance Curves, refer to MC34001, 34002, 34004 data sheet.

NOTE: 3. Input bias currents of JFET input op amps approximately double for every 10°C rise in junction temperature. To maintain junction temperatures as close to ambient as is possible, pulse techniques are utilized during test.

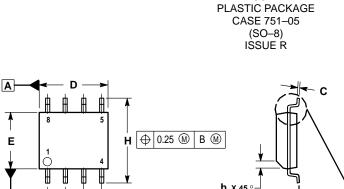
LF347, B LF351 LF353

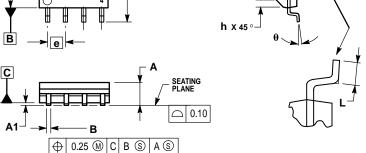
OUTLINE DIMENSIONS

D SUFFIX

N SUFFIX PLASTIC PACKAGE CASE 626-05 ISSUE K -B-NOTE 2 -A-_T_ SEATING PLANE ⊕ Ø 0.13 (0.005) M T A M B M

NOTES:


- IOLES:

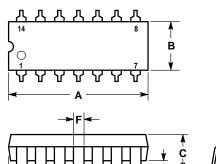

 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

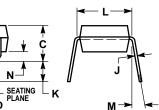
 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).

 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.40	10.16	0.370	0.400
В	6.10	6.60	0.240	0.260
C	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100 BSC	
Н	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300 BSC	
М		10°		10°
N	0.76	1.01	0.030	0.040

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 DIMENSIONS ARE IN MILLIMETERS.


- 2. DIMENSIONS ARE IN MILLIMETERS.
 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.


	MILLIMETERS			
DIM	MIN	MAX		
Α	1.35	1.75		
A1	0.10	0.25		
В	0.35	0.49		
С	0.18	0.25		
D	4.80	5.00		
E	3.80	4.00		
е	1.27	BSC		
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.25		
θ	0°	7 °		

LF347, B LF351 LF353

OUTLINE DIMENSIONS

N SUFFIX PLASTIC PACKAGE CASE 646-06 ISSUE L

NOTES:

- LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- 4. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.715	0.770	18.16	19.56	
В	0.240	0.260	6.10	6.60	
С	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100 BSC		2.54 BSC		
Н	0.052	0.095	1.32	2.41	
J	0.008	0.015	0.20	0.38	
K	0.115	0.135	2.92	3.43	
L	0.300 BSC		7.62 BSC		
М	0°	10°	0°	10°	
N	0.015	0.039	0.39	1.01	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Motorola and Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

 \Diamond

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

