

02166766957 -02166766927

info@atrinelec.com

@atrinelec

NPN SILICON POWER TRANSISTOR

The UTC MJE13002 designed for use in high-volatge,high speed, power switching in inductive circuit, It is particularly suited for 115 and 220V switchmode applications such as switching regulator's,inverters,DC-DC converter,Motor control, Solenoid/Relay drivers and deflection circuits.

FEATURES

- *Collector-Emitter Sustaining Voltage:
- VCEO (sus)=300V.
- *Collector-Emitter Saturation Voltage:
- VCE(sat)=1.0V(Max.) @Ic=1.0A, IB =0.25A
- *Switch Time- tf =0.7 μ s(Max.) @Ic=1.0A.

1: BASE 2:COLLECTOR 3: EMITTER

ABSOLUTE MAXIMUM RATINGS

7 IDOOLO IL IVII VIII VIII I VIII VIII VIII	00		
PARAMETER	SYMBOL	RATING	UNIT
Collector-Emitter Voltage	VCEO (sus)	300	V
Collector-Emitter Voltage	Vcev	600	V
Emitter Base Voltage	VEBO	9	V
Collector Current- Continuous - Peak (1)	Ic Icm	1.5 3	А
Base Current – Continuous - Peak (1)	lв Івм	0.75 1.5	Α
Emitter Current – Continuous - Peak (1)	le Ieм	2.25 4.5	А
Total Power Dissipation @ TA=25℃ Derate above 25℃	Pb	1.4 11.2	Watts MW/℃
Total Power Dissipation @ TC=25℃ Derate above 25℃	Po	40 320	Watts MW/℃
Operating and Storage Junction Temperature Range	Tj , Tstg	-65 to +150	°C

THERMAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	MAX	UNIT
Thermal Resistance, Junction to Case	RθJC	3.12	°C/W
Thermal Resistance, Junction to Ambient	R θ JA	89	°C/W
Maximum Load Temperature for Soldering Purposes:	TL	275	$^{\circ}$
1/8" from Case for 5 Seconds			

⁽¹⁾ Pulse Test : Pulse Width=5ms, Duty Cycle≤10%

UTC UNISONIC TECHNOLOGIES CO. LTD

Designer 's Data for "Worst Case" Conditions – The Designer 's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves – representing boundaries on device characteristics – are given to facilitate "Worst case" design.

ELECTRICAL CHARACTERISTICS (Tc=25°C unless otherwise noted)

ELECTION L	CHARACTERISTIC	OLITOI WISC HOLD	α,			
	SYMBOL	MIN	TYP	MAX	UNIT	
OFF CHARACTER	RISTICS (1)					
Collector-Emitter S	Sustaining Voltage	VCEO(SUS)	300			V
(Ic=10 mA , I _B =0)		V CEO(SUS)	300			V
Collector Cutoff Co	urrent	ICEV				mA
(Vcev=Rated Value	e, V _{BE} (off)=1.5 V)				1	
(Vcev=Rated Value	e, VBE(off)=1.5V,Tc=100°C)				5	
Emitter Cutoff Cur	rent	ІЕВО			1	mA
(VEB=9 V, IC=0)						
SECOND BREAK	DOWN					=
Second Breakdow	n Collector Current with bass forward biased	Is/b	Se	e Figure	10	
Clamped Inductive	e SOA with base reverse biased	RBSOA		e Figure		
ON CHARACTER	ISTICS (1)					
DC Current Gain						
(Ic=0.5 A, VcE=2 \	/)	hFE1	8		40	
(Ic=1 A, VcE=2 V)	•	hFE2	5		25	
Collector-Emitter S	Saturation Voltage	VCE(sat)				V
(Ic=0.5A,IB=0.1A)	Ŭ				0.5	
(Ic=1A,IB=0.25A)					1	
(Ic=1.5A,IB=0.5A)				3		
(Ic=1A,IB=0.25A,T				1		
Base-Emitter Satu	ration Voltage	VBE(sat)				V
(Ic=0.5A,IB=0.1A)					1	
(Ic=1A,IB=0.25 A)	100%				1.2	
(Ic=1A,I _B =0.25A,T	C=100 C)				1.1	
DYNAMIC CHARA	ACTERISTICS					
Current-Gain-Band		fī	4	10		MHz
(Ic=100mA,VcE=10		''				IVI⊓Z
Output Capacitano		Cob		21		pF
(VcB=10V,IE=0,f=0			I .	I .		
	RACTERISTICS(TABLE 1)	1 .			1	1
Delay Time	(Vcc=125V,lc=1A,	td		0.05	0.1	μ S
Rise Time	(VCC=125V,IC=1A, IB1=IB2=0.2A,tp=25 μ s,	tr		0.5	1	μS
Storage Time	Duty Cycle≤1%)	ts		2	4	μ S
Fall Time	Daily Gyord ~ 170)	tf		0.4	0.7	μ S
	O, CLAMPED (TABLE 1,FIGURE 12)					
Storage Time		tsv		1.7	4	μ s
Crossover Time	(Ic=1A,Vclamp=300V,	tc		0.29	0.75	μs
Fall Time	I _{B1} =0.2A,V _{BE} (off)=5V,Tc=100℃)	tfi		0.15		μs
	•					

⁽¹⁾ Pulse Test : PW=300 μ s, Duty Cycle≤2%

CLASSIFICATION OF HFE1

RANK	Α	В	С	D	E	F
RANGE	8 ~ 16	15 ~ 21	20 ~ 26	25 ~ 31	30 ~ 36	35 ~ 40

UTC UNISONIC TECHNOLOGIES CO. LTD

TYPICAL PERFORMANCE CHARACTERISTICS

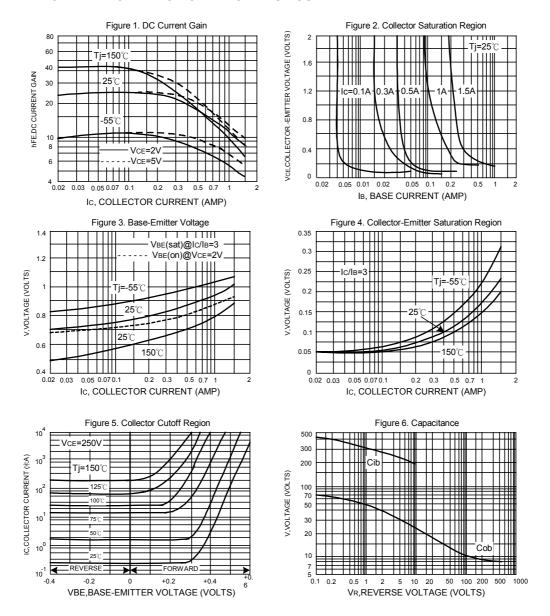


TABLE 1.TEST CONDITIONS FOR DYNAMIC PERFORMANCE

IABLL	RESISTIVE				
TEST CIRCUITS	DUTY CYCLE ≤ 10% NOTE PW and Vcc Adjusted for Desired Ic RB Adjusted for Desired IB1 PW and Vcc Ad	+125V RC RB SCOPE			
CIRCUIT	Coil Data : GAP for 30 mH/2 A Vcc=20V FERROXCUBE core #6656 Lcoil=50mH Vclamp=300V Full Bobbin (-200 Turns) #20	Vcc=125V Rc=125 Ω D1=1N5820 or Equiv. RB=47 Ω			
TEST WAVEFORMS	OUTPUT WAVEFORMS IC Ic(pk) If CLAMPED If Adjusted to Obtain Ic Obtain Ic It = Lcoil(Icpk) Vcc Vcc Vclamp Time It = Lcoil(Icpk) Vcc Vclamp Test Equipment Scope-Tektronics 475 or Equivalent	+10.3V + 25 µS 0 - 8.5V } t,tr<10ns Duty Oydy=1.0% Re and Rc adjusted for desired ls and lc			

TABLE 2.TYPICAL INDUCTIVE SWITCHING PERFORMANCE

Ic	Tc	Tsv	Trv	Tfi	Tti	Tc
AMP	℃	μs	μs	μs	μs	μs
0.5	25	1.3	0.23	0.30	0.35	0.30
	100	1.6	0.26	0.30	0.40	0.36
1	25	1.5	0.10	0.14	0.05	0.16
	100	1.7	0.13	0.26	0.06	0.29
1.5	25	1.8	0.07	0.10	0.05	0.16
	100	3	0.08	0.22	0.08	0.28

Note: All Data Recorded in the inductive Switching Circuit Table 1

UTC UNISONIC TECHNOLOGIES CO. LTD

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase, However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each wave form to determine the total switching time, For this reason, the following new terms have been defined.

tsv=Voltage Storage Time, 90% IB1 to 10% Volamp trv=Voltage Rise Time, 10-90% Vclamp tfi=Current Fall Time, 90-10% Ic tti=Current Tail. 10-2% Ic tc=Crossover Time, 10% Vclamp to 10% IC

An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222:

PSWT=1/2 Vcclc (tc)f

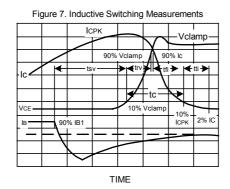
In general, trv + tfi = tc. However, at lower test currents this relationship may not be valid.

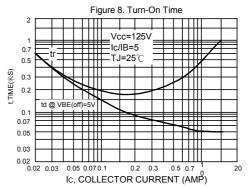
As is common with most switching transistor, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100

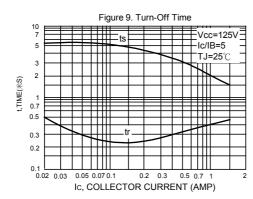
SAFE OPERATING AREA INFORMATION

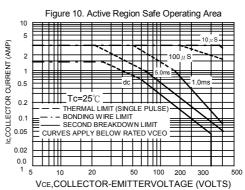
FORWARD BIAS

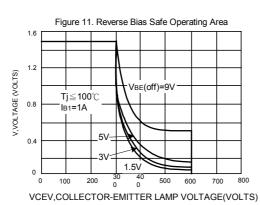
There are two limitations on the power handling ability of a transistor: average junction temperature and second break-down. Safe operating area curves indicate Ic – VcE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

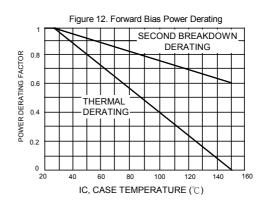

The data of Figure 10 is based on Tc=25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when Tc≧25°ℂ. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 10 may be found at any case tem-perature by using the appropriate curve on Figure 12.

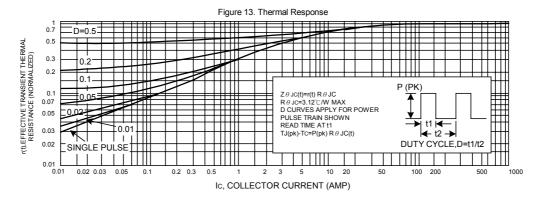

TJ(pk) may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.


REVERSE BIAS


For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during re-verse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an ava-lanche mode. Figure 11 gives RBSOA characteristics.







UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC

UNISONIC TECHNOLOGIES CO. LTD

7