

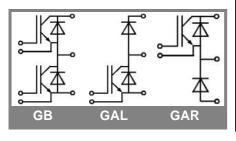
02166766957 -02166766927

info@atrinelec.com

@atrinelec

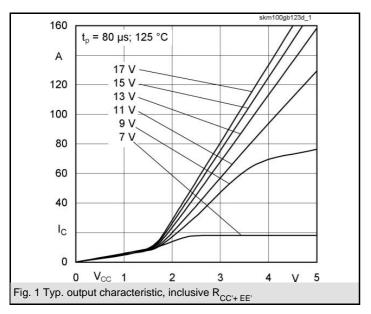
SEMITRANSTM 2

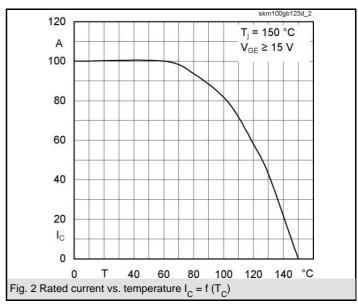
IGBT Modules

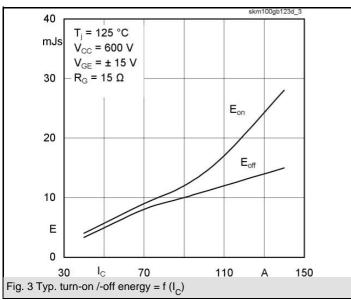

SKM 100GB123D SKM 100GAL123D SKM 100GAR123D

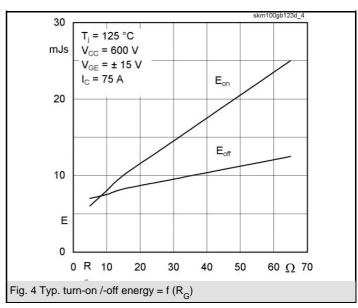
Features

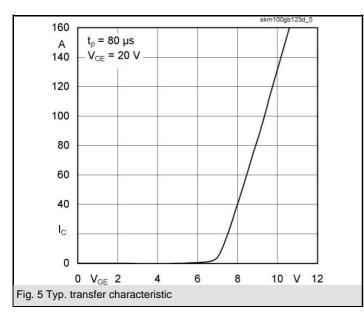
- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distances (20 mm)

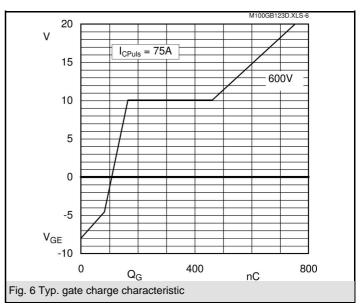

Typical Applications

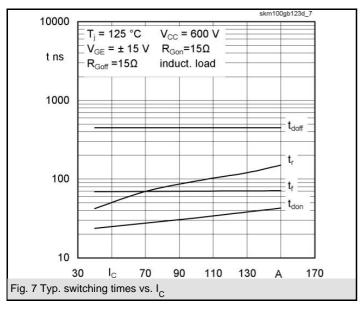

• Switching (not for linear use)

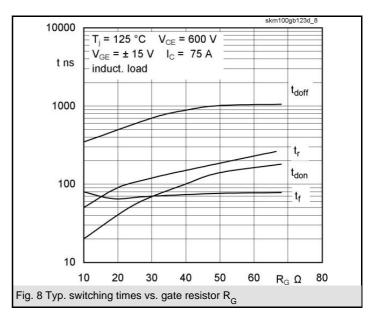


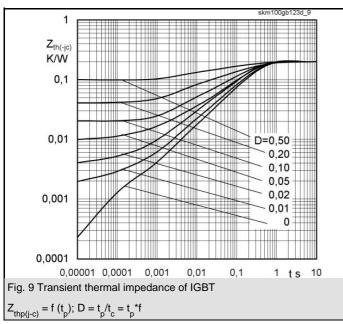

Absolute Maximum Ratings $T_c = 25$ °C, unless otherwise specifie							
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
I _C	$T_c = 25 (80) ^{\circ}C$	100 (90)	Α				
I _{CRM}	$t_p = 1 \text{ ms}$	150	Α				
V_{GES}		± 20	V				
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	2500	V				
Inverse diode							
I _F	T _c = 25 (80) °C	95 (65)	Α				
I _{FRM}	$t_p = 1 \text{ ms}$	150	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	720	Α				
Freewheeling diode							
I _F	T _c = 25 (80) °C	130 (90)	Α				
I _{FRM}	$t_p = 1 \text{ ms}$	200	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1100	А				

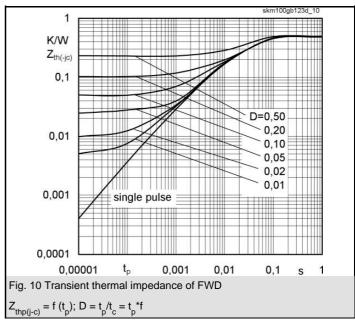

Characteristics		c = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$	4,5	5,5	6,5	V			
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) ^{\circ}C$		0,1	0,3	mA			
$V_{CE(TO)}$	$T_j = 25 (125) ^{\circ}C$		1,4 (1,6)	1,6 (1,8)	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		14,6 (20)	18,6 (25,3)	mΩ			
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V			
C _{ies}	under following conditions		5	6,6	nF			
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25$ V, $f = 1$ MHz		0,72	0,9	nF -			
C _{res}			0,38	0,5	nF			
L _{CE}				30	nH			
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,75 (1)		mΩ			
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 75 A		30	60	ns			
t _r	$R_{Gon} = R_{Goff} = 15 \Omega$, $T_j = 125 °C$		70	140	ns			
t _{d(off)}	$V_{GE} = \pm 15 \text{ V}$		450	600	ns			
t _f			70	90	ns			
E _{on} (E _{off})			10 (8)		mJ			
	Inverse diode							
$V_F = V_{EC}$	$I_{Fnom} = 75 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V			
$V_{(TO)}$	$T_j = 125 \text{ () } ^{\circ}\text{C}$			1,2	V			
r _T	$T_j = 125 \text{ () } ^{\circ}\text{C}$		12	15	mΩ			
I _{RRM}	I _{Fnom} = 75 A; T _j = 125 () °C di/dt = 800 A/μs		27 (40)		A			
Q _{rr}			3 (10)		μC			
E _{rr}	V _{GE} = 0 V		3		mJ			
FWD	T	Ī						
$V_F = V_{EC}$	$I_F = 100 \text{ A}; V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,2	V			
V _(TO)	$T_j = 125 \text{ () }^{\circ}\text{C}$		0	1,2	V m0			
r _T	$T_j = 125 \text{ () }^{\circ}\text{C}$		8 35 (50)	11	mΩ A			
I _{RRM} Q _{rr}	I _F = 100 A; T _j = 25 (125) °C di/dt = 1000 A/μs		5 (14)		μC			
	1		3 (14)		mJ			
E _{rr}	V _{GE} = 0 V				IIIJ			
	characteristics	1		0.40	1200			
R _{th(j-c)}	per IGBT			0,18	K/W K/W			
R _{th(j-c)D}	per Inverse Diode per FWD			0,5 0,36	K/W			
R _{th(j-c)FD}	'							
R _{th(c-s)}	per module			0,05	K/W			
Mechanic				_				
M _s	to heatsink M6	3		5	Nm			
M _t	to terminals M5	2,5		5	Nm			
W				160	g			

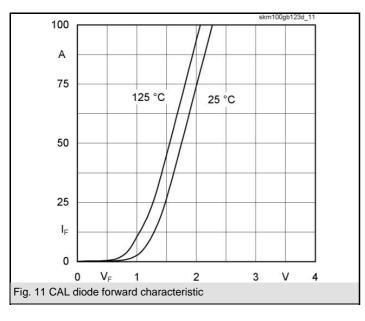


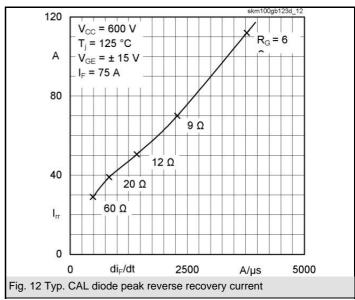


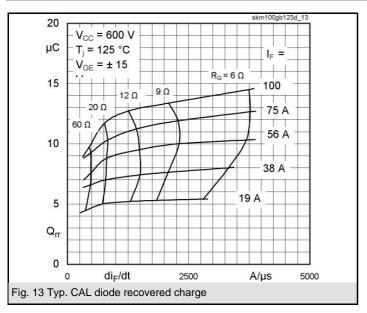


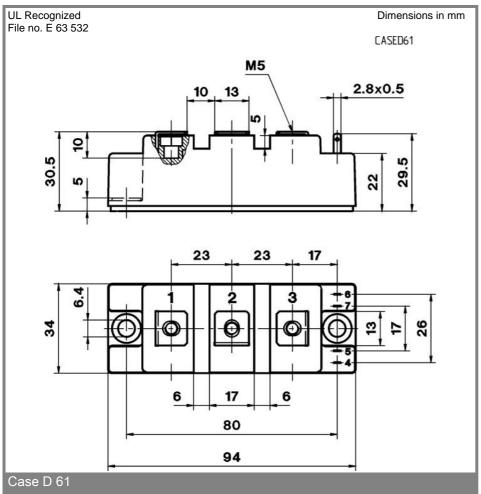


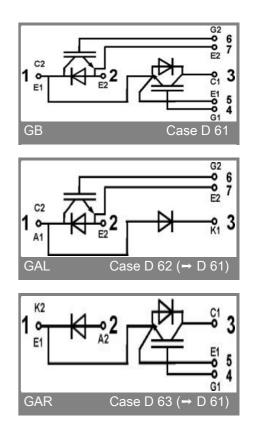












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.