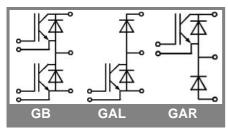


info@atrinelec.com

@atrinelec

SEMITRANSTM 3

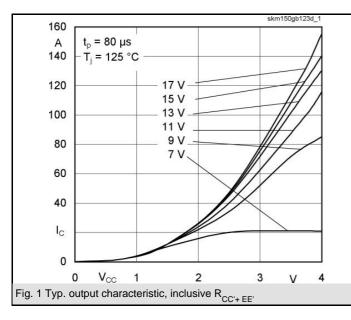
IGBT Modules

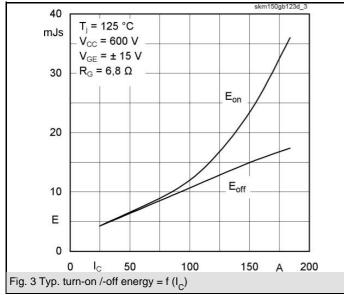

SKM 150GB123D SKM 150GAL123D SKM 150GAR123D

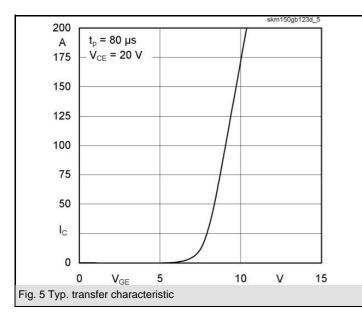
Features

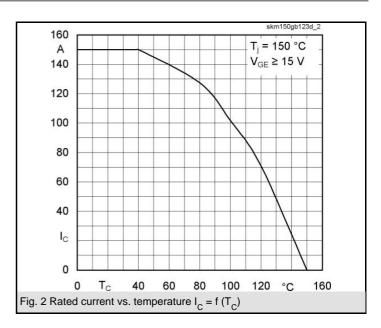
- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

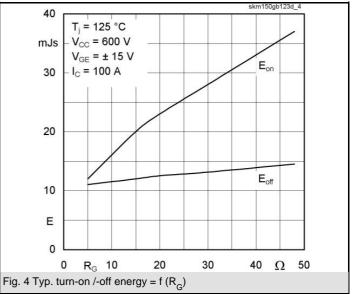
Typical Applications

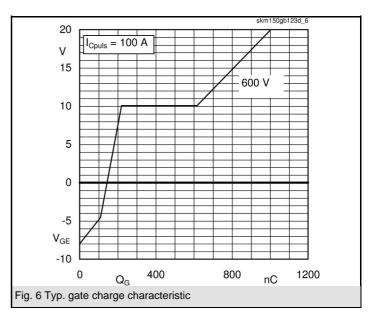

• Switching (not for linear use)

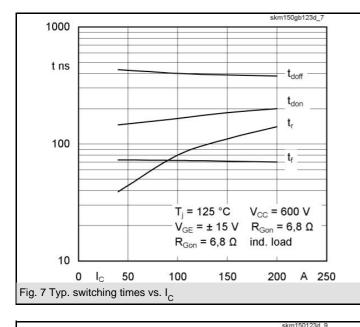


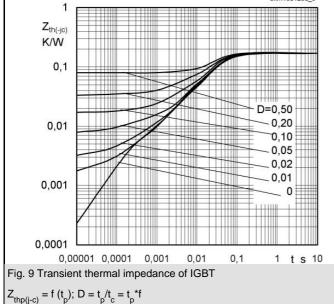

	Absolute Maximum Ratings $T_c = 25 \text{ °C}$, unless otherwise spec						
	Symbol	Conditions	Values	Units			
	IGBT						
	V _{CES}		1200	V			
	I _C	T _c = 25 (80) °C	150 (110)	А			
	I _{CRM}	t _p = 1 ms	200	A			
	V _{GES}		± 20	V			
	T _{vj} , (T _{stg})	$T_{OPERATION} \le T_{stg}$	- 40 + 150 (125)	°C			
	V _{isol}	AC, 1 min.	2500	V			
	I _F	T _c = 25 (80) °C	150 (100)	А			
	I _{FRM}	t _p = 1 ms	200	А			
	I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	1100	А			
	Freewheeling diode						
	I _F	T _c = 25 (80) °C	200 (135)	А			
	I _{FRM}	t _p = 1 ms	300	А			
	I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	1450	А			

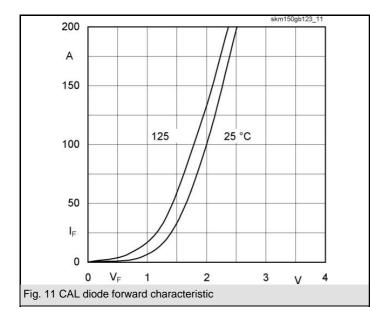

Characteristics		$T_c = 25 \text{ °C}$, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 4 \text{ mA}$	4,5	5,5	6,5	V
ICES	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,1	0,3	mA
V _{CE(TO)}	$T_j = 25 (125) °C$		1,4 (1,6)	1,6 (1,8)	V
r _{CE}	$V_{GE} = 15 \text{ V}, \text{ T}_{j} = 25 (125) \text{ °C}$		11 (15)	14 (19)	mΩ
V _{CE(sat)}	$I_{Cnom} = 100 \text{ A}, V_{GE} = 15 \text{ V}, \text{ chip level}$		2,5 (3,1)	3 (3,7)	V
C _{ies}	under following conditions		6,5	8,5	nF
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1	1,5	nF nF
C _{res}			0,5	0,6 20	nF
	real terminal ship $T = 25 (125) \circ C$		0.25 (0.5)	20	
R _{CC'+EE'}	res., terminal-chip $T_c = 25 (125) \degree C$		0,35 (0,5)		mΩ
t _{d(on)}	$V_{CC} = 600 \text{ V}, \text{ I}_{Cnom} = 100 \text{ A}$		160	320	ns
t _r	$R_{Gon} = R_{Goff} = 6,8 \Omega, T_j = 125 °C$		80 400	160 520	ns ns
t _{d(off)} t	V _{GE} = ± 15 V		400 70	100	ns
τ _f Ε (Ε)				100	mJ
E _{on} (E _{off})			13 (11)		ШJ
Inverse d		i		<u> </u>	1
V _F = V _{EC}	I _{Enom} = 100 A; V _{GE} = 0 V; T _j = 25 (125)		2 (1,8)	2,5	V
V _(TO)	T _i = 125 () °C			1,2	V
r _T	$T_{j} = 125$ () °C		8	11	mΩ
I _{RRM}	I _{Fnom} = 100 A; T _j = 25 (125) °C		35 (50)		Α
Q _{rr}	di/dt = 1000 A/µs		5 (14)		μC
E _{rr}	V _{GE} = V				mJ
FWD					
$V_F = V_{EC}$	I _F = 150 A; V _{GE} = 0 V, T _j = 25 (125) °C		2 (1,8)	2,5	V
V _(TO)	$T_{j} = 125$ () °C		_	1,2	V
r _T	$T_j = 125$ () °C		5	8,7	mΩ
I _{RRM}	$I_{F} = 100 \text{ A}; T_{j} = 25 (125) ^{\circ}\text{C}$		40 (65)		A
Q _{rr}	di/dt = A/µs		5 (15)		μC
E _{rr}	V _{GE} = V				mJ
	characteristics				1
R _{th(j-c)}	per IGBT			0,15	K/W
R _{th(j-c)D}	per Inverse Diode			0,3	K/W
R _{th(j-c)FD}	per FWD			0,25	K/W
R _{th(c-s)}	per module			0,038	K/W
Mechanic	cal data				
M _s	to heatsink M6	3		5	Nm
M _t	to terminals M6	2,5		5	Nm
w				325	g

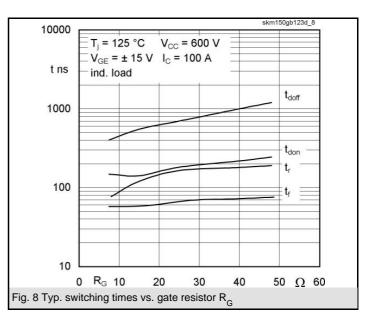

© by SEMIKRON

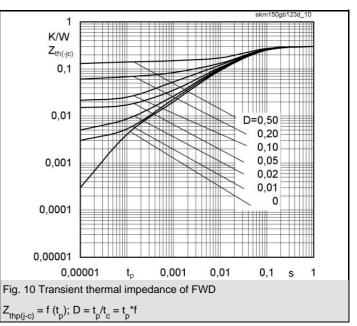


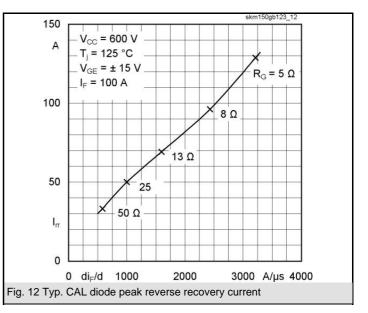


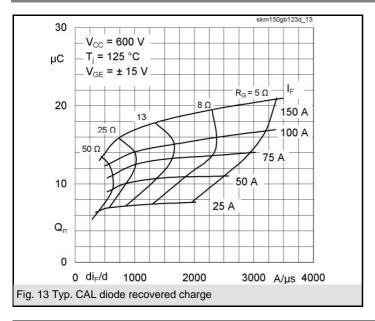


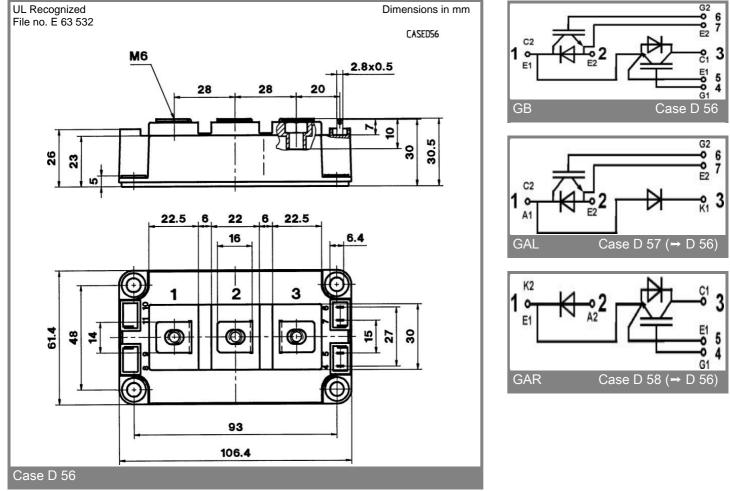












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.